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To Be Long or To Be Wide: How Data Format Influences Convergence and 
Estimation Accuracy in Multilevel Structural Equation Modeling

Julia-Kim Walthera , Martin Hechtb , Benjamin Nagengasta,c and Steffen Zitzmannd 

aUniversity of T€ubingen; bHelmut Schmidt University; cKorea University; dMedical School Hamburg 

ABSTRACT 
A two-level data set can be structured in either long format (LF) or wide format (WF), and both have 
corresponding SEM approaches for estimating multilevel models. Intuitively, one might expect these 
approaches to perform similarly. However, the two data formats yield data matrices with different num
bers of columns and rows, and their cols : rows is related to the magnitude of eigenvalue bias in sam
ple covariance matrices. Previous studies have shown similar performance for both approaches, but 
they were limited to settings where cols� rows in both data formats. We conducted a Monte Carlo 
study to investigate whether varying cols : rows result in differing performances. Specifically, we exam
ined the p : N (cols : rows) effect on convergence and estimation accuracy in multilevel settings. Our 
findings suggest that (1) the LF approach is more likely to achieve convergence, but for the models 
that converged in both, (2) the LF and WF approach yield similar estimation accuracy, which is related 
to (3) differential cols : rows effects in both approaches, and (4) smaller ICC values lead to less accurate 
between-group parameter estimates.

KEYWORDS 
Accuracy; convergence; 
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Covariance matrices are an integral part of multivariate sta
tistics (T. W. Anderson, 2003). In structural equation mod
eling (SEM), the covariance matrix of the observed variables 
can be expressed as a function of the model parameters. To 
estimate a specified model, the sample covariance matrix of 
the observed variables is estimated first. Then, the model 
parameters are estimated by applying a fitting function, 
whose objective is to minimize the discrepancy between the 
sample covariance matrix and the model-implied covariance 
matrix. The model parameters are estimated by algorithms 
that use matrix algebra. Thus, the properties of involved 
matrices, such as the sample covariance matrix, are of 
importance.

Among matrix properties, eigenvalues appear to be the 
most important ones. Eigenvalues are a special set of scalars 
of a matrix and their characteristics inform us about other 
important matrix properties. At least one zero eigenvalue 
indicates singularity (which implies non-invertibility). At 
least one non-positive eigenvalue shows non-positive defin
iteness. At least one eigenvalue close to zero or largely 
spread out extrema result in a large condition number 
(which equals the ratio of the largest to the smallest eigen
value; see Golub & Van Loan, 2013). These unfavorable 
matrix properties, which can easily be detected by the 

eigenvalues, are linked to lower convergence rates and less 
accurate estimations (e.g., Boomsma, 1985; Golub & Van 
Loan, 2013; Hill & Thompson, 1978; Kelley, 1995; Lange 
et al., 1999; Zitzmann, 2018; Zitzmann et al., 2015).

Commonly, the sample covariance matrix is estimated by 
the standard maximum likelihood (ML) estimator, which 
yields biased eigenvalue estimates (Stein, 1956). It has been 
shown analytically and empirically that the magnitude of 
the bias of the sample eigenvalues is comparable to the ratio 
of the number of observed variables to the sample size p : N 
(Arruda & Bentler, 2017; Dempster, 1972; Hayashi et al., 
2018; Sch€afer & Strimmer, 2005; Stein, 1956, 1975)1. More 
precisely, “biased” means that small eigenvalues are pushed 
downwards, and large eigenvalues are pushed upwards com
pared to their population counterpart. As a consequence, 
the ratio of the largest to the smallest eigenvalue gets larger, 
and it is more likely that at least one is zero or negative 
(even when all population eigenvalues are positive). As pre
viously mentioned, this makes lower convergence rates and 
less accurate estimations more likely.

As a matter of fact, large p, small N settings, are a fre
quent state of affairs in the social sciences, which has 
received much attention (for an overview related to SEM, 
see, e.g., Deng et al., 2018; Marcoulides et al., 2023). Some 

� 2024 The Author(s). Published with license by Taylor & Francis Group, LLC 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), 
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. 
The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

CONTACT Julia-Kim Walther julia-kim.walther@uni-tuebingen.de Hector Research Institute of Education Sciences and Psychology, University of T€ubingen, 
72072 T€ubingen, Germany. 

Supplemental data for this article can be accessed online at https://doi.org/10.1080/10705511.2024.2320050.
1Note that Hayashi et al. (2018) pointed out that when p is negligibly small relative to N, the magnitude of the bias is 1 : N: However, when p is not negligibly 
small relative to N, which is commonly the case, the magnitude of the bias is p : N:

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 
2024, VOL. 31, NO. 5, 759–774 
https://doi.org/10.1080/10705511.2024.2320050 

http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2024.2320050&domain=pdf&date_stamp=2024-08-28
http://orcid.org/0000-0001-5758-1211
http://orcid.org/0000-0002-5168-4911
http://orcid.org/0000-0001-9868-8322
http://orcid.org/0000-0002-7595-4736
https://doi.org/10.1080/10705511.2024.2320050
http://www.tandfonline.com
https://doi.org/10.1080/10705511.2024.2320050


research in this area focused on effects of p : N on various 
outcomes.2 For example, Yuan and Chan (2008) found that 
both convergence rate and accuracy of estimation decrease 
with increasing p : N: Further, they proposed the “ridge 
method”, which adds a constant of size p : N to the on-diag
onal of the sample covariance matrix to improve its eigen
value structure. This resulted in higher convergence rates 
and more efficient model parameter estimates. In the con
text of model fit and inference, Yuan et al. (2018) found 
that larger p : N led to more biased likelihood ratio statistic, 
and Xing and Yuan (2017) proposed corrections for biased 
model fits based on these statistics. Further, some research
ers suggested that the fundamental problem with test statis
tics in large p, small N settings might be the biased sample 
eigenvalues (Arruda & Bentler, 2017; Huang & Bentler, 
2015; Yuan & Bentler, 2017). In sum, previous research sup
ports the notion that p : N is an important factor in conver
gence, model estimation, model fit and inference, and that 
the effect of p : N is connected to the eigenvalue bias.

It is interesting to note that in the investigated single 
level settings, the number of observed variables p corre
sponds to the number of columns, and the sample size N 
corresponds to the number of rows of the data matrix by 
which the sample covariance matrix is estimated. Thus, p :

N can be expressed as cols : rows: This emphasizes the rela
tion between data matrix, sample covariance matrix, its 
eigenvalues, and model performance. However, many data 
sets in the social sciences have a hierarchical data structure. 
With two-level data (e.g., students nested within classes, cli
ents nested within therapists, employees nested within 
teams), the number of observed variables and sample size 
has no one-to-one relation to columns and rows. Firstly, the 
two levels of data, level-1 (e.g., students, clients, employees) 
and level-2 (e.g., classes, therapists, teams), have different 
numbers of observed variables and sample sizes. Secondly, 
the same data set can be arranged in two different formats, 
long format (LF) and wide format (WF), that result in data 
matrices with inherently different dimensions. LF leads to 
longer data matrices (i.e., more rows), whereas WF leads to 
wider data matrices (i.e., more columns). However, to the 
best of our knowledge, possible equivalents of the p : N 
(cols : rows) effect in multilevel settings have not been inves
tigated before.

There are multiple approaches to estimate a multilevel 
SEM. We focus on the multilevel SEM approach by Muth�en 
(1990, 1994) which uses the data in LF, and the single level 
restricted CFA approach by Barendse and Rosseel (2020) 
and Mehta and Neale (2005) which uses the data in WF. 
Both approaches are readily available in the lavaan package 
(Rosseel, 2012) for the statistical software R. Whereas past 

research demonstrated the analytical and empirical equiva
lence of both approaches (Barendse & Rosseel, 2020; Mehta 
& Neale, 2005), the empirical evidence included only set
tings with a small number of observed variables at both lev
els, small level-1 sample sizes, and, most notably, large level- 
2 sample size. In other words, the data matrices in both 
data formats had cols� rows, implying small biases of the 
eigenvalues. Little is known about how the approaches per
form when cols : rows differs across data matrices of both 
formats. We are interested in examining two (intertwined) 
effects on convergence and model estimation here: (a) the 
effect of the data format, because the data format inherently 
leads to different cols : rows, and (b) the effect of cols : rows 
in each data format. Whereas the effect of the data format 
answers which data format (approach) to use, the effect of 
cols : rows answers which cols : rows to aim at with our 
study design. We conducted a Monte Carlo study to investi
gate these matters. The present article is organized as fol
lows. First, we introduce the data matrices and sample 
covariance matrices in each data format. Second, we discuss 
the two SEM approaches. Finally, we present the results of 
the present study, discuss its implications, and provide sug
gestions for future research.

1. How Data Format Influences the Representation 
of Data Set and (Co)variances 

We first clarify the terms data set, data format, data matri
ces, and (sample) covariance matrices. To this end, we refer 
to the example in Figure 1. The data set (see Panel A) speci
fies the data that we collect in a given setting. Relevant 
information are the sample sizes and the number of 
observed variables at both levels. At level-2, we have the 
number of groups g. At level-1, we have the group size n, 
and the total sample size N ¼ g � n: For means of simplifica
tion, we restrict our example to the same observed variables 
p at both levels. In other words, we only look at level-2 vari
ables that are aggregates of level-1 variables. Models that 
include the same variable at both levels are often referred to 
as contextual analysis models (e.g., Boyd & Iversen, 1979; 
Raudenbush & Bryk, 2002). In our example, we observed 
two groups (g ¼ 2) with two units each (n¼ 2), resulting in 
a total sample size of N ¼ g � n ¼ 4 units. For every level-1 
unit we observed two variables (p¼ 2), x1 and x2, which we 
aggregate to obtain level-2 variables. The data matrix (see 
Panel B) specifies the data set in matrix form. It has two 
dimensions, columns and rows. The dimensions of the data 
matrix depend on the sample sizes and the number of 
observed variables, and, importantly, on the data format. 
We can arrange our data set either in LF or in WF. The 
data format further determines which sample covariance 
matrices are estimated. The sample covariance matrix con
tains the variances and covariances of the observed variables 
(i.e., of the columns of the respective data matrix). Note 
that the sample covariance matrix (S) is not always the 
unbiased population covariance matrix estimator (R̂). This 
is why we refer to the entirety of covariance matrices of the 
observed variables as covariance matrices (see Panel C). 

2Note that a large strain of research in large p, small N settings focused on 
the “model size” effect, which has been conceptualized in many different 
ways: as the effect of the number of observed variables p (Shi et al., 2018, 
2019), the number of freely estimated parameters q (Shi et al., 2018), the 
number of participants per (freely estimated) parameter N : q (Herzog et al., 
2007; Jackson, 2001, 2003), or a function of both p and q, the degrees of 
freedom df (Herzog et al., 2007; Shi et al., 2018). Because it has not been 
conceptualized as p : N, we do not go into detail about the model size effect 
here.
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Next we consider the data matrices and covariance matrices 
more closely. Note that the procedures we present in the 
following correspond to the multilevel modeling approaches 
by Muth�en (1990, 1994) and Mehta and Neale (2005) and 
their implementation in lavaan that we investigated in our 
study, and may not generalize to other approaches.

1.1. Long Format: Multilevel Representation of Data Set 
and (Co)variances

When we arrange the data set in long format (LF), the total 
raw data matrix (LF-T) has p columns and N ¼ g � n rows. 
We decompose the total data matrix (LF-T) into the 
between-group data matrix (LF-B) and the within-group 
data matrix (LF-W), see the upper part of Panel B of Figure 
1, to separate the total (co)variance of each variable(s) into 
between-group and within-group components. For this, the 
group means (on level-2) are estimated and subtracted from 
the value of their respective level-1 units for every observed 
variable. The group means constitute the data matrix LF-B 
with p columns and g rows. The deviations from these 
group means constitute the data matrix LF-W with p col
umns and g � n rows. Both LF-W and LF-B include all units 
for every p, resulting in all-units (co)variances3. One sample 
covariance matrix for each level using LF-W and LF-B is 
estimated.

The ML estimators for the sample covariance matrices of 
the two levels, the pooled within-group estimator in 
Equation (1) and the between-group estimator in Equation 
(2) (Muth�en, 1990, 1994), read:

SLF−W ¼
1

N − g

Xg

j¼1

Xn

i¼1
ðXij − �XjÞðXij − �XjÞ

T , (1) 

SLF−B ¼
n

g − 1

Xg

j¼1
ðXj − �XÞðXj − �XÞT , (2) 

with j ¼ 1, . . . , g groups and i ¼ 1, . . . , n units per group. 
Xij denotes the raw data in LF (i.e., LF-T), �Xj denotes group 
mean estimates (i.e., LF-B), ðXij − �XjÞ denotes unit-wise 
deviations from these group mean estimates (i.e., LF-W), �X 
denotes a row vector with grand mean estimates, and T is 
the matrix transpose.

For the within-group level, the unbiased ML estimator of 
the population covariance matrix is the pooled within-group 
sample covariance matrix, SLF−W ¼ R̂LF−W : However, for 
the between-group level, the unbiased ML estimator of the 
population covariance matrix is a function of the sample 
covariance matrices of both levels (Muth�en, 1990, 1994):

R̂LF−B ¼
1
c
ðSLF−B − SLF−WÞ, (3) 

where c denotes the common group size, and in the case of 
balanced data, c¼ n. The cols : rows implied biases in the 
eigenvalues are p : ðg � nÞ for SLF−W ¼ R̂LF−W and p : g for 
SLF−B and R̂LF−B: However, note that SLF−B and R̂LF−B are 
influenced by more factors than p and g, which we will dis
cuss in the next section, and that in lavaan, negative varian
ces and related covariances in R̂LF−B are set to zero4. Thus, 
the eigenvalues of these LF-B covariance matrices differ 
from what we would expect from cols : rows alone. All LF 
covariance matrices are shown in the upper part of Panel C 
of Figure 1.

Figure 1. Representation of data set and (Co)variances. Example data set with number of groups g¼ 2, group size n¼ 2, and number of observed variables p¼ 2. 
In the WF approach, p is split into n specific-units variables (e.g., x1:2 is x1 for every 2nd unit in the group). We have coding variables for each unit (ID), units within 
groups (i), and groups (j). The grey shades indicate different units. j ¼ condition number. R̂LF−B in lavaan ¼ R̂LF−B with negative variances and related covarian
ces set to 0.

3Barendse and Rosseel (2020) introduced the term unit-specific with regards to 
the WF covariance matrix. To avoid confusion with within-group effects and 
make the difference between LF and WF more succinct, we use the terms 
specific-units (co)variances for the WF covariance matrix, and all-units 
(co)variances for the LF covariance matrices instead.

4We found no information on this procedure in the reference manual or 
presentations but discovered it by chance. The potential reason is discussed 
later.
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1.1.1. Why Between-Group Covariance Matrices Have 
Even More Problems with Unfavorable Matrix Properties
As outlined, LF-B has larger cols : rows than LF-W, more 
specifically, p : g in contrast to p : ðg � nÞ, which implies 
larger bias in the eigenvalues of SLF−B than of SLF−W :

Hence, non-singularity, non-positive definiteness, and high 
condition numbers are more likely. However, the eigenval
ues of SLF−B and R̂LF−B are likely not only influenced by the 
cols : rows of LF-B. For example, the probability of being 
non-positive definite increases not only with increasing p 
and decreasing g (which links to the cols : rows) but also 
with decreasing group sizes n and intraclass correlation5

(ICC; Bhargava & Disch, 1982; Hill & Thompson, 1978; 
Searle et al., 1992). Further, R̂LF−B is estimated as the differ
ence of SLF−B and SLF−W , see Equation (3), and the subtrac
tion often results in a non-positive definite covariance 
matrix even when both sample covariance matrices are posi
tive definite (Bhargava & Disch, 1982; Hill & Thompson, 
1978). Non-positive definiteness indicates zero or negative 
eigenvalues, which is related to singularity and high condi
tion numbers. In sum, the fact that the occurrence of non- 
positive definiteness is related to larger p, and smaller g, n, 
and ICC, suggests that the exact bias term of SLF−B and 
R̂LF−B may be different than p : g: We will elaborate more 
on this assumption shortly.

1.2. Wide Format: Single Level Representation of Data 
Set and (Co)variances

When we arrange the data set in WF, the total raw data 
matrix (WF-T) has p � n columns and g rows, see the lower 
part of Panel B of Figure 1. Here we do not separate the 
total (co)variance in within- and between-group compo
nents. However, each variable p is split into n specific-units 
variables, or as Mehta and Neale (2005, p.1) put it, “people 
[n] are variables too.” One sample covariance matrix is esti
mated from WF-T.

We estimate the sample covariance matrix with the 
estimator for single level data. The single level represented 
two-level sample covariance matrix with specific-units 
(co)variances reads:

SWF−T ¼
1
g

Xg

j¼1
ðX:ij − X:iÞðX:ij − X:iÞT , (4) 

where X:i denotes the raw data in WF (i.e., WF-T) and X:i 
denotes a row vector with grand mean estimates. SWF−T is 
the so-called biased ML estimator6 for RWF−T : The cols :

rows implied bias in the eigenvalues of SWF−T is ðp � nÞ : g:
We see SWF−T in the lower part of Panel C of Figure 1.

1.3. Summary and Comparison

All LF and WF covariance matrices are estimated by ML. 
The cols : rows of LF-W, LF-B, and WF-T, are p : ðg � nÞ, p :

g, and ðp � nÞ : g: Thus, the order of the magnitude of cols :

rows is LF-W< LF-B<WF-T. However, it is unclear 
whether the cols : rows bias in sample eigenvalues in single 
level settings is directly applicable to multilevel settings. As 
we pointed out earlier, evidence suggests that the between- 
group covariance matrices are not only influenced by the 
cols : rows of LF-B. However, no study investigated the exact 
bias term of the eigenvalues of LF and WF covariance 
matrices before. Within the scope of this study, we are not 
interested in the exact term of the bias. Rather we use cols :

rows as a proxy of the eigenvalue bias, because we assume 
that it is the main influence on the bias. Let us support this 
assumption by looking at the other matrix properties of the 
LF and WF covariance matrices, which are shown in Panel 
C of Figure 1. R̂LF−W is non-singular, positive definite, and 
has a small condition number. We see that R̂LF−B has only 
negative variances. Thus, in lavaan all elements are set to 
zero which results in a singular, positive-semi definite 
matrix with an infinite condition number. R̂WF−T is singu
lar, indefinite, and has an infinite condition number. Note 
that negative variances in R̂WF−T are kept which might con
tribute to inadmissible values (“Heywood cases”). In sum, 
the LF covariance matrices are assumed to have a smaller 
eigenvalue bias than the WF covariance matrix.

2. How Data Format Influences Multilevel SEM 
Approaches

It has been shown that ML estimation in multilevel SEM 
(Muth�en, 1990, 1994) is analytically and in certain settings 
empirically equivalent to single level restricted confirmatory 
factor analysis (CFA) models (Barendse & Rosseel, 2020; 
Mehta & Neale, 2005). The multilevel SEM approach uses the 
data matrix in LF. The single level approach uses the data 
matrix in WF. More specifically, Mehta and Neale (2005) dem
onstrated analytical equivalence of the LF and WF approach 
for continuous, unbalanced data with full information ML 
(FIML) estimation, and provided an empirical example which 
used the WF approach (in Mplus). Barendse and Rosseel 
(2020) demonstrated empirical equivalence of the LF and WF 
approach for discrete, balanced and unbalanced data with mar
ginal ML (MML) and pairwise ML (PML) estimation in a 
Monte Carlo study (in lavaan and Mplus). With very small 
group sizes n ¼ 3 (but large g) the WF approach even resulted 
in somewhat less biased parameter estimates. However, all 
empirical data sets contained only small p and n, and large g 
(and thus large N), which resulted in cols� rows in all 
involved data matrices, and no significant differences in the 
cols : rows of the data matrices of both formats. In contrast, 
different cols : rows imply different magnitudes of eigenvalue 
bias. Thus, data sets that result in strongly different cols : rows 
in both formats imply differences in convergence and estima
tion accuracy. In lavaan, the multilevel SEM (LF) approach is 
yet implemented only for continuous data. Thus, we restricted 
our analysis to continuous, balanced data and standard 

5Hox et al. (2017) define the ICC as amount of between-group variance out of 
the total variance (i.e., sum of between- and within-group 
variance), r2

B=ðr
2
B þ r2

WÞ:
6In the unbiased ML estimator, the denominator would be g − 1: However, 
we focus on the biased estimator because it is the default in lavaan (see 
Rosseel et al., 2023, reference manual p.81 accessed on 16 September 2023, 
lav_matrix_cov function).
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normal-theory ML estimation for both the LF and WF 
approach7. We do not want to go into detail about the model 
estimation and fitting functions here. The interested reader is 
referred to Mehta and Neale (2005). Instead, we want to 
underline how the data format influences the modeling 
approaches, more specifically, the model specifications and 
minimum data set requirements.

2.1. Model Specification

Whereas the same multilevel model can be estimated in the 
LF and WF approaches, their model specifications differ. For 
reasons of simplicity, we only consider so called “intercept- 
only models” (e.g., Hox et al., 2017; Raudenbush & Bryk, 
2002) of all-units (co)variances. In other words, we model the 
p variables covariance structure for the within- and between- 
group level which is equivalent to the LF covariance matrices. 
In the LF approach, we have the same model specification at 
each level. The (co)variances at both levels are modeled as 
(co)variances of the p observed variables (from R̂LF−W and 
R̂LF−B, respectively). In the WF approach, the model 

specification differs at both levels. In contrast to the LF 
approach, all parameters are modeled as (co)variances of latent 
factors of the observed p� n specific-units variables (from 
R̂WF−T). To estimate the all-units (co)variances, the between- 
group parameters are modeled as common factors, with factor 
loadings set to 1, and the within-group parameters are mod
eled as unique factors, with equality constraints added to 
(co)variances of the unique factors of the same variable p. 
Note that with the equality constraints, homoscedasticity of 
specific-units variables is modeled. Figure 2 depicts the model 
specifications for a contextual intercept-only model for both 
approaches, using the earlier example data set. Note that in 
both approaches, the mean structure at the between-group 
level has to be included in order to discern the total (co)vari
ance into within- and between-group parts. In the “genuine” 
multilevel approach (LF), this is done implicitly. In the 
restricted single level CFA approach (WF), we have to add it. 
Example R code for the specification and estimation of both 
models is presented in the Online Supplemental Material.

2.2. Software Requirements

We want to consider two requirements of lavaan because 
they are connected to the (sample) covariance matrices and 
their matrix properties. The first requirement concerns both 
approaches; the second concerns only the LF approach.

Figure 2. Example model specification in the LF and WF approach for a contextual intercept-only model. Example data set with group size n¼ 2, and number of 
observed variables p¼ 2. In the WF approach, p is split into n specific-units variables (e.g., x1:2 is x1 for every 2nd unit in the group; see also Figure 1), and identical 
parameter labels indicate equality constraints in the model. Across both approaches, the same parameters have the same color. Across both levels, matching 
parameters have similar color. Affiliation of parameters to the between- and within-group level is indicated by location above and below the dashed line.

7The default estimator in both single level and multilevel SEM in lavaan is the 
standard normal-theory ML estimator (see Rosseel et al., 2023, reference 
manual p.53f; see also https://lavaan.ugent.be/tutorial/est.html, accessed on 
16 September 2023). Note also that both approaches use the quasi-Newton 
algorithm (Jak et al., 2021).
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2.2.1. Minimum Data Set
One requirement of lavaan is that the data matrices we give 
as input, LF-T and WF-T, respectively, need to have cols �
rows: This requirement is likely based in the fact that sam
ple covariance matrices have undesirable matrix properties 
in these settings. For example, when cols > rows, at least 
one sample eigenvalue becomes zero and the sample covari
ance matrix turns singular (e.g., Duncan et al., 1997; 
Gorsuch, 1983; Wothke, 1993). Whereas the ML estimators 
in the LF and WF approach does not require the covariance 
matrices to be non-singular (i.e., invertible), singular matri
ces are non-positive definite and result in an infinite condi
tion number, which might have a negative impact on 
convergence and estimation accuracy. Due to the different 
cols : rows of LF-T and WF-T, p : ðg � nÞ and ðp � nÞ : g, the 
minimum data set requirements for both approaches differ. 
Two points are noteworthy here. Firstly, larger group sizes n 
are advantageous for LF-T, but disadvantageous for WF-T. 
Secondly, there are settings where we can only use the LF 
approach because p < ðg � nÞ (in LF-T) is more easily satis
fied than ðp � nÞ < g (in WF-T). Our example data set with 
g¼ 2, n¼ 2, and p¼ 2, would result in 2 : 4 in LF-T and 4 :

2 in WF-T. Thus, we could only use the LF approach to 
analyze it. Note that the cols � rows requirement generally 
supports the importance of considering cols : rows:

2.2.2. Definiteness of R̂LF−B

In the LF approach, there is one further requirement. Model 
estimation with the quasi-Newton algorithm (the default) 
fails with an error when R̂LF−B is negative definite (i.e., has 
only negative eigenvalues; see e.g., Rosseel, 2018). This 
might be the reason why lavaan sets negative variances and 
related covariances in R̂LF−B to 0, because this seems to pre
vent that all eigenvalues are negative. Thus, we do not have 
to worry about this requirement, but keep in mind, that 
R̂LF−B can be altered.

3. This Study

The aim of this study is to investigate the equivalent of the 
p : N (cols : rows) effect on convergence and estimation 
accuracy in multilevel SEM. To this end, we scrutinize the 
LF and WF approach in settings which result in different 
cols : rows of the data matrices of both data formats. We use 
cols : rows as a proxy of the eigenvalue bias of the LF and 
WF covariance matrices. Two (intertwined) effects are con
sidered: (a) the effect of the data format, with its inherently 
different cols : rows, and (b) the effect of cols : rows in each 
data format. By investigating (a) the effect of the data for
mat, we want to learn which data format (and related 
approach) to prefer in a given setting. The same setting 
results in inherently different cols : rows in the data matrices 
of both approaches. For example, the setting g¼ 10, n¼ 2, 
and p¼ 2 results in 2 : 20 in LF-W, 2 : 10 in LF-B, and 4 :

10 in WF-T. Unless all data matrices have cols� rows, we 
assume that the LF approach, which has inherently smaller 
cols : rows in its data matrices, outperforms the WF 

approach. We are also interested in (b) the effect of cols :

rows in each data format, to gather insight into optimal 
study design. On that account, different settings that result 
in the same cols : rows in both data formats are investigated. 
Out of the multiple data matrices in LF, we focus on LF-B. 
We do so because LF-B does not have to satisfy cols < rows 
in lavaan, which implies more possible variation in cols :

rows, and thus has the largest (i.e., most problematic) cols :

rows among the data matrices in LF. To continue the 
example, to have 4 : 10 in LF-B (like in WF-T), we need 
another setting, for example where p¼ 4 (and g¼ 10 and 
n¼ 2 stay the same).

3.1. Method

In the following, we outline the data generation and evalu
ation criteria of the Monte Carlo study. As pointed out 
earlier, we only considered intercept-only models at the 
within- and between-group level. As a consequence, the 
data-generating model equals the data analysis model. All 
computations were performed on an AMD Ryzen 
Threadripper PRO 3975WX 32-cores (3.50 GHz) CPU on a 
Windows 10 (Version 20H2) platform. Data generation and 
analysis was conducted using R version 4.3.1 (R Core Team, 
2023)8. The R code for data, analysis, tables, and figures is 
available at https://github.com/demianJK/LF_WF_SEM.

3.1.1. Data Generation
For the data generation, we drew from a multivariate nor
mal distribution with population means fixed to zero and 
varying population covariance matrices and sample charac
teristics. Data generation was done in LF and separately for 
level-1 and level-2 data (see also example LF model in 
Figure 2). With respect to the population covariance matri
ces, we varied the number of observed variables p and the 
ICC. The range of the ICC was informed by common values 
in the social sciences (Gulliford et al., 1999). The total vari
ance of each observed variable, r2

B þ r2
W , was constrained 

to be 1. Hence, r2
B ¼ ICC and r2

W ¼ 1 − r2
B: The variances 

for each level were then used to compute the covariances, 
respectively, with a fixed correlation of .30. Note that these 
variances and covariances are also the parameters in our 
intercept-only models. Applying a fully-crossed design for p 
and the ICC, we arrived at 12 different population condi
tions. With respect to the sample characteristics, we varied 
the total sample size N, the numbers of units per group n, 
and the number of groups g. We first set N and n, com
puted g ¼ N=n and then excluded all conditions where N �

8We used the following R packages: broom version 1.0.5 (Robinson et al., 
2023), car version 3.1-2 (Fox et al., 2023), cowplot version 1.1.1 (Wilke, 2020), 
dplyr version 1.1.0 (Wickham, Chang, et al., 2023; Wickham, François, et al., 
2023), effectsize version 0.8.3 (Ben-Shachar et al., 2023), ggbreak version 0.1.1 
(Yu & Xu, 2022), ggplot2 version 3.4.1 (Wickham, Chang, et al., 2023; 
Wickham, François, et al., 2023), gridExtra version 2.3 (Auguie & Antonov, 
2017), huxtable version 5.5.2 (Hugh-Jones, 2022), lavaan version 0.6–14 
(Rosseel et al., 2023), lsr version 0.5.2 (Navarro, 2021), MASS version 7.3-58.2 
(Ripley et al., 2023), patchwork version 1.1.2 (Pedersen, 2022), stringr version 
1.5.0 (Wickham & R Studio, 2022) tidyr version 1.3.0 (Wickham et al., 2022), 
and xlsx version 0.6.5 (Dragulescu & Arendt, 2020).
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n, g< 2, and where g was not an integer. Applying the 
described partially crossed design for N, n, and g, we arrived 
at 20 different sample conditions. Note that we chose the 
variations of p, n, and g to create conditions where LF-T 
has cols � rows (and thus, LF-B and WF-T have cols >
rows, cols ¼ rows, or cols < rows). We have done this 
because of the cols � rows requirement of lavaan for LF-T 
and WF-T. When LF-T has cols > rows, then WF-T has cols 
> rows, too, and neither approach could be applied. 
Moreover, we did this to investigate whether the LF 
approach leads to good results in settings where it is applic
able but the WF approach is not (i.e., LF-T has cols � rows, 
but WF-T has cols > rows). Finally, we partially crossed the 
population and sample conditions and arrived at a total of 
240 simulation conditions. For each condition, we simulated 
1000 data sets. The complete simulation design is shown in 
Figure 3.

3.1.2. Evaluation Criteria
To assess model performance, we included convergence 
rate, and for estimation accuracy, relative root mean squared 
error (RMSE), relative bias, and relative variance9. The 

RMSE assesses the overall accuracy of an estimator. It is 
defined as the square root of the mean of the squared differ
ences between the estimates and the population value. Bias 
is a measure to assess the extent with which an estimator 
targets the population value. It is defined as the mean of the 
differences between the estimates and the population value. 
Variance is a measure of the efficiency of an estimator. It is 
defined as the mean of the differences between the estimates 
and the mean of all estimates. We used the relative versions 
of these parameters dividing them by the respective popula
tion value (which is determined by the ICC). We further 
multiplied them by 100 to arrive at percentages. We did this 
to investigate potential differences in accuracy, bias, and 
efficiency with respect to the ICC. For example, when 
RMSE¼ 0.1 for both h ¼ ICC ¼ 0:5 and h ¼ ICC ¼ 0:1, 
this mounts to relative RMSE of 20% and 100%, respect
ively, which suggests that the estimation of the smaller ICC 
is less accurate. Note that we only consider estimation 
accuracy of (co)variances but not of means of the intercept- 
only models.

3.2. Results

In the following, we summarize the results of (a) the effect 
of the data format, and (b) the effect of cols : rows on con
vergence and estimation accuracy criteria in each data for
mat. For this purpose, we plotted the results of the Monte 
Carlo study aggregated (a) by the sample size at level-2, the 

Figure 3. Simulation design.

9We further investigated the aforementioned matrix properties, non- 
singularity, definiteness, and the condition number. However, results 
suggested that these matrix properties did not offer critical information above 
cols : rows: Thus we do not report them in the main findings. Further 
information can be found in Figure 1 in the Online Supplemental Material.
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number of groups g (same data set, different data formats), 
and (b) by cols : rows of LF-B and WF-T (different data 
sets, same data format). Out of the sample sizes at the two 
levels, level-1 group size n, and level-2 number of groups g, 
we decided to plot the latter because it equals the number 
of rows (i.e., observations) in both LF-B and WF-T. Table 1
shows descriptive statistics of the convergence and estima
tion accuracy criteria. Note that for the latter, we used only 
simulation conditions that resulted in 100% convergence in 
both approaches to minimize differences in Monte Carlo 
error in both approaches and thus, facilitate comparison of 
both approaches. An overview of the results of the simula
tion study clustered by the factors of the simulation design 
(i.e., 240 simulation conditions for each approach) can be 
found in Figure 2 in the Online Supplemental Material.

3.2.1. The Effect of Data Format
3.2.1.1. Convergence. In Figure 4, convergence rates aggre
gated by sample size at level-2 g are depicted. It is evident 
that with increasing g, average convergence rates increased 
with a seemingly logarithmic trend in the LF and WF 
approach. Nevertheless, there was an effect of data format 
on convergence, as the LF approach was more likely to con
verge in small and moderate sample sizes. For instance, the 
average convergence rate in g¼ 100 was 100% in the LF 
approach, and 80% in the WF approach. Further, for the 
WF approach, we see that the convergence trend was non- 
monotonous with g. Whereas g¼ 25 had an average conver
gence rate of 75%, g¼ 40 and g¼ 50 had lower ones. The 

non-monotonous trend of the WF approach suggests that 
other terms than g might also be relevant for convergence. 
We will scrutinize this matter in the following section when 
investigating the cols : rows effects.

3.2.1.2. Estimation Accuracy. Results for the estimation 
accuracy of between-group parameters are shown in Figure 
5. The relative RMSE (Panel A), relative bias (Panel B), and 
relative variance (Panel C) decreased with larger numbers of 
groups g in a very similar fashion for both approaches. 
Slight differences were only present for settings with small g 
and small ICC where variability across simulation conditions 
was large. Overall, this suggests that there was no substantial 
effect of the data format on estimation accuracy of between- 
group level parameters. However, the findings revealed a 
connection between the estimation accuracy of between- 
group level parameters and the magnitude of the ICC. 
Specifically, the smaller the ICC, the more inaccurate, 
biased, and inefficient were the between-group parameters. 
Besides main effects of g and ICC, the results further imply 
an interaction effect. The least accurate, most biased, and 
inefficient results were obtained in settings with small g and 
small ICC.

Similar patterns have been found for the estimation 
accuracy of the within-group parameters that are depicted 
in Figure 6. However, in contrast to the between-group 
parameters, an effect of the ICC was only present for the 
relative variance, as was an interaction effect of g and ICC. 
Furthermore, the within-group parameters were overall 
more accurate, less biased, and more efficient than the 
between-group parameters.

3.2.1.3. Summary. Our findings suggest that there was an 
effect of data format on convergence, but not on estimation 
accuracy, despite the different cols : rows (and implied mag
nitudes of eigenvalue biases) in both approaches. Further, 
we found an interaction effect of g, ICC, and parameter level 
on estimation accuracy. More specifically, the least accurate, 
most biased, and inefficient parameter estimates were 

Figure 4. Convergence aggregated by sample size at level-2. Points indicate means; lines indicate means ± standard errors (i.e., variability across simulation condi
tions). The sample size at level-2 g corresponds to the rows of both LF-B and WF-T.

Table 1. Descriptive statistics of the model performance criteria.

Criterion M SD Median Min Max

Convergence ratea 49.28 49.33 49.25 0.00 100.00
Relative RMSEb 84.83 101.44 47.76 14.04 571.09
Relative biasb −4.12 12.42 −1.27 −105.16 5.04
Relative varianceb 10.36 20.33 3.10 0.48 144.17

Unit for all criteria is %.
aN¼ 480 (all simulation conditions for both approaches).
bN¼ 156 (all simulation conditions that converged 100% in both approaches).
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obtained in samples with small numbers of groups, small 
ICC values, and at the between-group level.

3.2.2. The Effect of Cols : Rows in Each Data Format 
3.2.2.1. Convergence. In Figure 7, convergence rates aggre
gated by cols : rows of LF-B and WF-T, p : g and ðp � nÞ : g, 
are shown. For cols < rows, both approaches led to average 
convergence rates of � 100%: For cols ¼ rows, however, 
results for both approaches differed. In LF, this always led 
to non-convergence. In WF, half of the models converged. 
For the LF approach, this extends the minimum data set 
requirements given by lavaan and informs about optimal 
study design. We require cols < rows in the input data 
matrix LF-T (p < ðg � nÞ) to use lavaan, and our results sug
gest that we additionally need to satisfy cols < rows in LF-B 

(p< g) to get a converging model in the LF approach. In 
other words, we have to design our study in such a way 
that the number of level-2 variables is smaller than the 
number of groups. The reason why p< g is required might 
be connected to the eigenvalue bias in R̂LF−B, which might 
have been non-negligible when cols ¼ rows10. However, we 
cannot confirm that because we used cols : rows only as a 
proxy of the eigenvalue bias. Comparing convergence rates 
aggregated by cols : rows and aggregated by sample size at 
level-2 (i.e., rows; see Figure 4), it can be seen that the for
mer exhibited smaller variability and thus, gave more reli
able information on convergence. It further suggests that 

Figure 5. Estimation accuracy of between-group parameters aggregated by sample size at level-2. Points indicate means; lines indicate means ± standard errors 
(i.e., variability across simulation conditions). The sample size at level-2 g corresponds to the rows of both LF-B and WF-T.

10Note that the matrix properties singularity and non-definiteness of R̂LF−B 
were non-informative here (for more information see Figures 1, 3, and 4 in 
the Online Supplemental Material).
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the effect of data format on convergence was attributable to 
the differences in cols : rows in both approaches.

3.2.2.2. Estimation Accuracy. We saw in the last section that 
there was no noticeable effect of data format on estimation 
accuracy. Put differently, the estimation accuracy in both 
approaches was very similar for a given number of groups g 
(i.e., rows of LF-B and WF-T) despite different cols, and 
thus, cols : rows of LF-B and WF-T. This suggests that there 
must have been different effects for cols : rows in each data 
format. In Figure 8, the relative RMSE (Panel A), relative 
bias (Panel B), and relative variance (Panel C) by the cols :

rows in each data format are shown. We indeed see that the 
cols : rows effect is less steep in the WF approach. For 
example, similar relative RMSE, relative bias, and relative 
variance where obtained with an cols : rows of 0.2 in LF-B 

in the LF approach and 0.4 in WF-T in the WF approach. 
Within each data format, larger cols : rows resulted in larger 
relative RMSE, relative bias, and relative variance. Further, 
there was an interaction with the ICC. Larger cols : rows and 
smaller ICC values led to more inaccurate, biased, and inef
ficient estimation, with the most problematic results in set
tings with large cols : rows and small ICC values. To 
continue the example from above, a cols : rows of 0.2 in LF- 
B in combination with the smallest ICC 0.05 yielded 
approximately a six times higher relative RMSE than large 
ICC values of 0.50 in the LF approach. Note however, that 
these cols : rows effects, and interaction effects of cols : rows 
and ICC were not strictly monotonous. We will take up the 
issue in the discussion.

For the estimation accuracy of the within-group parame
ters, which is depicted in Figure 9, there was a slightly 

Figure 6. Estimation accuracy of within-group parameters aggregated by sample size at level-2. Points indicate means; lines indicate means ± standard errors (i.e., 
variability across simulation conditions). The sample size at level-2 g corresponds to the rows of both LF-B and WF-T.
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increasing trend in relative RMSE (Panel A) and relative 
variance (Panel C) with increasing cols : rows: For the rela
tive bias (Panel B), there was no systematic trend. In add
ition, the relative variance showed small effects of the ICC. 
Smaller ICC resulted in somewhat larger relative variance. 
Overall, as for the between-group parameters, the cols : rows 
effect of the WF approach was less steep. Compared to the 
between-group parameters, the effects of cols : rows and the 
ICC on the estimation accuracy of the within-group parame
ters were very small.

3.2.2.3. Summary. The results showed that there were differ
ential effects of cols : rows on convergence and estimation 
accuracy in both data formats (approaches). With regard to 
convergence, we found that cols < rows in LF-B (p< g) and 
cols � rows in WF-T (ðp � nÞ � g) had to be satisfied which 
expands the minimum data set requirements of lavaan. For 
estimation accuracy, the effect in the WF approach was less 
strong. For both approaches, increasing cols : rows and hav
ing a smaller ICC was detrimental. These effects were more 
pronounced for the between-group parameters and smaller 
ICC values.

4. Discussion

One can arrange a two-level data set in two different data 
formats, LF and WF. In the two data formats, the involved 
data matrices, have inherently different cols : rows: The cols :

rows is the p : N equivalent, which depends on g, n, and p 
in multilevel settings, and implies a magnitude of bias in 
the sample eigenvalues. For both data formats, SEM 
approaches to estimate multilevel models with standard ML 
exist. Past research has provided evidence for analytical and 
empirical equivalence in settings with large samples sizes at 
level-2 where cols� rows in all data matrices, and thus, the 
assumed bias in eigenvalues was negligibly small. Using a 
Monte Carlo study, we included settings with small sample 
sizes at level-2 where cols : rows differs in all data matrices. 
We investigated the effect of the data format (with the same 

data set in different data formats), and the effects of cols :

rows (with different data sets in the same data format).
Regarding the effect of the data format, we found only 

an effect on convergence. In particular, the LF approach 
with its inherently smaller cols : rows was more likely to 
converge. The estimation accuracy of both approaches did 
not differ substantially by the choice of the data format. 
Thus, the results of our study extend the evidence of the 
empirical equivalence of the LF and WF approaches to set
tings where both the sample size at level-1 n, and the sam
ple size at level-2 g, are small.

Regarding the cols : rows, we found differential effects on 
convergence and estimation accuracy in both data formats 
(approaches). Concerning the former, the LF approach 
requires that the number of variables is smaller than the 
number of groups (p< g), whereas the WF approach 
requires that the number of variables multiplied by group 
size is smaller than or equal to the number of groups 
(ðp � nÞ < g; which is equivalent to the lavaan requirement). 
Cols : rows (number of observed variables to sample size at 
level-2) includes more information than rows alone (sample 
size at level-2). It informs us about minimum requirements 
on study design, and which data format (approach) to use 
for converging models.

In accordance with the effect of data format, we found 
differential cols : rows effects on estimation accuracy. Within 
each data format (approach), smaller cols : rows resulted in 
models that yield more accurate, less biased, and more effi
cient parameter estimates. However, the WF approach had a 
less steep effect. Thus, the difference in cols, and thus, in 
cols : rows, in WF-T compared to LF-B (by the factor n) 
was not, as expected, detrimental for the estimation accur
acy. Instead, the factor n was likely responsible for the less 
steep effect. Apparently, n appears to simply operate dis
tinctly in both data formats (approaches). In the LF 
approach, the sample size at level-1 n influences the accur
acy of the first and second-order moments at level-2. In the 
WF approach, the sample size at level-1 n (together with p) 
determines the number of “observed variables”, but also the 

Figure 7. Convergence aggregated by Cols : Rows: Points indicate means; lines indicate means ± standard errors (i.e., variability across simulation conditions). The 
cols : rows of LF-B and WF-T, p : g and ðp � nÞ : g, are depicted.
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number of equality constrains between related model 
parameters. Having more relations between “observed 
variables” with equality constrains similarly yields more 
accurate estimates. In sum, we assumed an effect of data 
format on estimation accuracy, based on the same cols :

rows effect on estimation accuracy in both data formats 
(approaches). However, we found no effect of data for
mat on estimation accuracy, but different cols : rows 
effects on estimation accuracy in both data formats 
(approaches).

Besides the main effects of data format and cols : rows, 
we found further noteworthy effects. Most notable is the 
interaction between g (or cols : rows) and magnitude of the 
ICC and parameter level on estimation accuracy. In particu
lar, the smaller g, or the larger the cols : rows, and the 
smaller the ICC values, the more inaccurate, biased, and 

inefficient are the between-group parameters. Again, these 
findings reveal valuable insight into optimal study design. 
When between-group parameters are of interest, and prior 
studies found marginal ICC values, then future studies 
should have relatively large g (or cols : rows).

4.1. Limitations and Directions for Future Research

Firstly, we used the cols : rows of a data matrix only as a 
proxy of the eigenvalue bias of the LF and WF covariance 
matrices. Our findings showed that within each data format, 
larger cols : rows resulted in lower convergence rates, and 
less accurate between-group parameter estimates in both 
approaches, which suggests that eigenvalue biases might 
have increased with increasing cols : rows: However, we did 

Figure 8. Estimation accuracy of between-group parameters aggregated by Cols : Rows: Points indicate means; lines indicate means ± standard errors (i.e., variabil
ity across simulation conditions). The cols : rows of LF-B and WF-T, p : g and ðp � nÞ : g, are depicted.
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not investigate the exact term of the eigenvalue biases. For 
example, as pointed out earlier, when level-2 variables are 
aggregates of level-1 variables, the matrix properties of 
R̂LF−B are not only influenced by p and g (which constitute 
cols : rows), but by n and the ICC (Bhargava & Disch, 1982; 
Hill & Thompson, 1978; Searle et al., 1992). This suggests 
that the bias term of its eigenvalues is influenced by these 
factors. Further, the effect of cols : rows on convergence and 
estimation accuracy was different for the LF and WF 
approach. This might be related to different eigenvalue 
biases. On the other hand, it could suggest that eigenvalue 
biases exert minor influence on convergence and estimation 
accuracy. Future research could investigate the exact term of 
the eigenvalue biases of LF and WF covariance matrices, 

and whether the difference in eigenvalue biases explains the 
difference in convergence and estimation accuracy.

Secondly, because our study was the first to investigate 
the p : N (cols : rows) equivalent within multilevel SEM, we 
included only simple intercept-only models. The influence 
in more complex models remains to be investigated. For 
example, it has been shown that in measurement models, 
convergence rates decreases with smaller numbers of indica
tors per factor, and smaller magnitude of factor loadings 
and factor correlations (J. C. Anderson & Gerbing, 1984; 
Boomsma, 1985; J€oreskog & S€orbom, 1984). Further, factor 
correlations are depended on correlations of indicators (i.e., 
observed variables), which implies that larger correlations of 
observed variables are desirable. In our study, correlations 

Figure 9. Estimation accuracy of within-group parameters aggregated by Cols : Rows: Points indicate means; lines indicate means ± standard errors (i.e., variability 
across simulation conditions). The cols : rows of LF-B and WF-T, p : g and ðp � nÞ : g, are depicted.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 771



of all observed variables were fixed to 0.3, and covariances 
of observed variables were computed by the correlation and 
the respective variances. Differences in covariances did not 
show any influence on convergence. However, covariances 
(correlations) of observed variables have a bivariate nature, 
whereas factor correlations have a multivariate nature. It 
would be interesting to investigate how eigenvalue bias 
influences convergence and estimation accuracy in factor 
models. Further, level-2 predictors might be examined. We 
included only level-2 variables that are aggregates of level-1 
variables. In other words, we investigated contextual analysis 
models. With level-2 predictors, the importance of larger n 
for more accurate between parameters could be smaller. The 
eigenvalue bias term of between-group covariance matrices 
of predictor variables is assumed to differ from those of 
between-group covariance matrices of level-1 aggregates. In 
sum, future research should investigate the influence of the 
eigenvalue bias in more complex multilevel SEM models 
with measurement models and level-2 predictors.

Thirdly, future research could investigate whether improv
ing the eigenvalue structure of LF and WF covariance matri
ces can improve performance. In single level settings, it has 
been shown that improving the eigenvalues of the sample 
covariance matrix can result in increased convergence rates 
and more accurate model estimates (e.g., Kamada & Kano, 
2012; Kamada et al., 2014; Yuan & Bentler, 2017; Yuan & 
Chan, 2008; Yuan et al., 2011). In multilevel settings, it has 
been shown that improving the eigenvalues of the model- 
implied between-group matrix results in more accurate 
between-group parameters (e.g., Chung et al., 2015; 
McNeish, 2016; Zitzmann, 2018). It seems promising to 
investigate improving the eigenvalues of the LF and WF 
covariance matrices, more specifically, R̂LF−B in the LF 
approach and R̂WF−T in the WF approach, and whether this 
could increase the accuracy of between-group parameters.

Fourthly, future studies could examine the effect of the ICC on 
the bias of the between-group parameters more closely. First, the 
evidence for its existence is mixed. Whereas some studies found 
no effect (e.g., Hox et al., 2010; McNeish & Stapleton, 2016; 
Meuleman & Billiet, 2009; Stegmueller, 2013), other studies, ours 
included, found that a smaller ICC leads to increased bias (e.g., 
Hox & Maas, 2001; L€udtke et al., 2008, 2011; Muthen & Satorra, 
1995; Zitzmann et al., 2015). Second, within the studies that found 
an effect, the direction of the bias differs. Most studies found a 
downward bias. However, the bias was mostly aggregated over 
parameters of different types. Hox and Maas (2001) classified 
them by type and found upward bias in variances and downward 
bias in factor loadings. Further, the type of parameter also 
depends on the modeling approach. L€udtke et al. (2011) com
pared manifest and latent approaches and found that only the 
approach who had latent variables at both levels resulted in 
upward bias. In our study, both approaches incorporated latent 
variables at both levels, and both exhibited a downward bias. 
However, we did not distinguish between different types of 
parameters. Future research could explore how the presence and 
direction of an ICC effect on the bias of between-group parame
ters may vary depending on the parameter type.

4.2. Conclusion

Our study has demonstrated two important main results. 
First, data format influences convergence but not estimation 
accuracy. Second, the rows and cols : rows of data matrices, 
which varies when conducting multilevel analysis in long 
versus wide format, along with the ICC are critical factors 
influencing the convergence and estimation accuracy of 
multilevel SEM approaches. To conclude with some literary 
advice: We aim for convergence all along, with accuracy 
nothing going wrong, especially if the ICCs are not strong, 
our data matrices should be comparatively long.
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